New England Complex Systems Institute



The New England Complex Systems Institute (NECSI) is an independent academic research and educational institution with students, postdoctoral fellows and faculty. In addition to the in-house research team, NECSI has co-faculty, students and affiliates from MIT, Harvard, Brandeis and other universities nationally and internationally.

NECSI has been instrumental in the development of complex systems science and its applications. We study how interactions within a system lead to its behavioral patterns, and how the system interacts with its environment. Our new tools overcome the limitations of classical approximations for the scientific study of complex systems, such as social organizations, biological organisms and ecological communities. NECSI's unified mathematically-based approach transcends the boundaries of physical, biological and social sciences, as well as engineering, management, and medicine.

NECSI research advances fundamental science and its applications to real world problems, including social policy matters. NECSI researchers study networks, agent-based modeling, multiscale analysis and complexity, chaos and predictability, evolution, ecology, biodiversity, altruism, systems biology, cellular response, health care, systems engineering, negotiation, military conflict, ethnic violence, and international development. (see NECSI Research).

NECSI conducts classes, seminars and conferences to assist students, faculty and professionals in their understanding of complex systems. NECSI sponsors postdoctoral fellows, provides research resources online, and hosts the International Conference on Complex Systems. Through its education, NECSI strives to contribute to science and the betterment of society (see NECSI Education).

 About Complex Systems


Overview: What is the study of Complex Systems?

Complex Systems is a new field of science studying how parts of a system give rise to the collective behaviors of the system, and how the system interacts with its environment. Social systems formed (in part) out of people, the brain formed out of neurons, molecules formed out of atoms, the weather formed out of air flows are all examples of complex systems. The field of complex systems cuts across all traditional disciplines of science, as well as engineering, management, and medicine. It focuses on certain questions about parts, wholes and relationships. These questions are relevant to all traditional fields.

Why Complex Systems?

The study of complex systems is about understanding indirect effects. Problems that are difficult to solve are often hard to understand because the causes and effects are not obviously related. Pushing on a complex system "here" often has effects "over there" because the parts are interdependent. This has become more and more apparent in our efforts to solve societal problems or avoid ecological disasters caused by our own actions. The field of complex systems provides a number of sophisticated tools, some of them concepts that help us think about these systems, some of them analytical for studying these systems in greater depth, and some of them computer based for describing, modeling or simulating these systems.

Three approaches to the study of Complex Systems:

There are three interrelated approaches to the modern study of complex systems, (1) how interactions give rise to patterns of behavior, (2) understanding the ways of describing complex systems, and (3) the process of formation of complex systems through pattern formation and evolution.